II T No

, 0 .:	P.Code: 20CE1006 R20 H.T.No.			· · · · · · · · ·
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)				
M.Tech. I Year II Semester Regular & Supplementary Examinations July-2025				
STRUCTURAL DYNAMICS (Structural Engineering)				
Tir	ne: 3 Hours	Max.	Mark	cs: 60
(Answer all Five Units $5 \times 12 = 60$ Marks)				
	UNIT-I			
1	Define the following	CO1	L2	12M
	i)Degree of freedom system ii) Harmonic Excitation			
	iii) Simple harmonic motion iv) D'Alemberts principle			
•	OR	001		<i>(</i>) <i>r</i>
2	a Derive the equation of motion for a damped single degree of freedom	CO 1	L3	6M
	system with forced vibration.b Briefly explain oscillatory motion.	CO1	L2	<i>C</i> M
	UNIT-II	COI	LZ	6M
3		CON	т э	103.5
3	Derive the solution for an undamped single-degree-of-freedom system with free vibration.	CO2	L3	12M
	OR			
4	Derive the expression for the logarithmic decrement for the damped free	CO3	L3	12M
	vibration of the SDOF for			
	i) Two successive cycles ii) Two cycles of N cycles apart			
	UNIT-III			
5	Briefly explain the orthogonal properties of normal modes.	CO4	L2	12M
	OR			
6	Draw the mode shapes for the given problem.	CO 4	L1	12M
	5000 KG			
	40 KN/m			
	6000 KG			
	60 KN/m			

UNIT-IV

Derive the equation of motion for a beam subjected to a uniform CO5 7 **L3 12M** distributed load.

OR

Derive the natural frequency and mode shapes for a uniform beam CO5 8 **L3 12M** having both ends free.

UNIT-V

9 Explain the step-by-step procedure of the Holzer method. Derive CO6 L2 12M fundamental natural frequencies and mode shapes.

OR

10 Find the fundamental natural frequencies and mode shapes of the CO6 L2 12M vibratory system for the figure below.

*** END ***